Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.202
Filtrar
1.
Genesis ; 62(2): e23596, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38665067

RESUMO

The vomeronasal organ (VNO) is a part of the accessory olfactory system, which detects pheromones and chemical factors that trigger a spectrum of sexual and social behaviors. The vomeronasal epithelium (VNE) shares several features with the epithelium of the main olfactory epithelium (MOE). However, it is a distinct neuroepithelium populated by chemosensory neurons that differ from the olfactory sensory neurons in cellular structure, receptor expression, and connectivity. The vomeronasal organ of rodents comprises a sensory epithelium (SE) and a thin non-sensory epithelium (NSE) that morphologically resembles the respiratory epithelium. Sox2-positive cells have been previously identified as the stem cell population that gives rise to neuronal progenitors in MOE and VNE. In addition, the MOE also comprises p63 positive horizontal basal cells, a second pool of quiescent stem cells that become active in response to injury. Immunolabeling against the transcription factor p63, Keratin-5 (Krt5), Krt14, NrCAM, and Krt5Cre tracing experiments highlighted the existence of horizontal basal cells distributed along the basal lamina of SE of the VNO. Single cell sequencing and genetic lineage tracing suggest that the vomeronasal horizontal basal cells arise from basal progenitors at the boundary between the SE and NSE proximal to the marginal zones. Moreover, our experiments revealed that the NSE of rodents is, like the respiratory epithelium, a stratified epithelium where the p63/Krt5+ basal progenitor cells self-replicate and give rise to the apical columnar cells facing the lumen of the VNO.


Assuntos
Órgão Vomeronasal , Órgão Vomeronasal/metabolismo , Órgão Vomeronasal/citologia , Animais , Camundongos , Mucosa Olfatória/metabolismo , Mucosa Olfatória/citologia , Queratina-15/metabolismo , Queratina-15/genética , Queratina-5/metabolismo , Queratina-5/genética , Queratina-14/metabolismo , Queratina-14/genética , Transativadores/genética , Transativadores/metabolismo
2.
Nat Commun ; 15(1): 3360, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637611

RESUMO

The mammalian olfactory system detects and discriminates between millions of odorants to elicit appropriate behavioral responses. While much has been learned about how olfactory sensory neurons detect odorants and signal their presence, how specific innate, unlearned behaviors are initiated in response to ethologically relevant odors remains poorly understood. Here, we show that the 4-transmembrane protein CD20, also known as MS4A1, is expressed in a previously uncharacterized subpopulation of olfactory sensory neurons in the main olfactory epithelium of the murine nasal cavity and functions as a mammalian olfactory receptor that recognizes compounds produced by mouse predators. While wildtype mice avoid these predator odorants, mice genetically deleted of CD20 do not appropriately respond. Together, this work reveals a CD20-mediated odor-sensing mechanism in the mammalian olfactory system that triggers innate behaviors critical for organismal survival.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Camundongos , Aprendizagem/fisiologia , Mamíferos/metabolismo , Odorantes , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Olfato/fisiologia , Antígenos CD20/metabolismo
3.
Glia ; 72(6): 1183-1200, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38477581

RESUMO

Barrier-forming olfactory glia cells, termed sustentacular cells, play important roles for immune defense of the olfactory mucosa, for example as entry sites for SARS-CoV-2 and subsequent development of inflammation-induced smell loss. Here we demonstrate that sustentacular cells express ACKR3, a chemokine receptor that functions both as a scavenger of the chemokine CXCL12 and as an activator of alternative signaling pathways. Differential gene expression analysis of bulk RNA sequencing data obtained from WT and ACKR3 conditional knockout mice revealed upregulation of genes involved in immune defense. To map the regulated genes to the different cell types of the olfactory mucosa, we employed biocomputational methods utilizing a single-cell reference atlas. Transcriptome analysis, PCR and immunofluorescence identified up-regulation of NF-κB-related genes, known to amplify inflammatory signaling and to facilitate leukocyte transmigration, in the gliogenic lineage. Accordingly, we found a marked increase in leukocyte-expressed genes and confirmed leukocyte infiltration into the olfactory mucosa. In addition, lack of ACKR3 led to enhanced expression and secretion of early mediators of immune defense by Bowman's glands. As a result, the number of apoptotic cells in the epithelium was decreased. In conclusion, our research underlines the importance of sustentacular cells in immune defense of the olfactory mucosa. Moreover, it identifies ACKR3, a druggable G protein-coupled receptor, as a promising target for modulation of inflammation-associated anosmia.


Assuntos
Inflamação , Mucosa Olfatória , Animais , Camundongos , Quimiocina CXCL12/metabolismo , Perfilação da Expressão Gênica , Inflamação/metabolismo , Neuroglia/metabolismo , Mucosa Olfatória/metabolismo
4.
Curr Allergy Asthma Rep ; 24(4): 211-219, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492160

RESUMO

PURPOSE OF REVIEW: Neurogenesis occurring in the olfactory epithelium is critical to continuously replace olfactory neurons to maintain olfactory function, but is impaired during chronic type 2 and non-type 2 inflammation of the upper airways. In this review, we describe the neurobiology of olfaction and the olfactory alterations in chronic rhinosinusitis with nasal polyps (type 2 inflammation) and post-viral acute rhinosinusitis (non-type 2 inflammation), highlighting the role of immune response attenuating olfactory neurogenesis as a possibly mechanism for the loss of smell in these diseases. RECENT FINDINGS: Several studies have provided relevant insights into the role of basal stem cells as direct participants in the progression of chronic inflammation identifying a functional switch away from a neuro-regenerative phenotype to one contributing to immune defense, a process that induces a deficient replacement of olfactory neurons. The interaction between olfactory stem cells and immune system might critically underlie ongoing loss of smell in type 2 and non-type 2 inflammatory upper airway diseases. In this review, we describe the neurobiology of olfaction and the olfactory alterations in type 2 and non-type 2 inflammatory upper airway diseases, highlighting the role of immune response attenuating olfactory neurogenesis, as a possibly mechanism for the lack of loss of smell recovery.


Assuntos
Transtornos do Olfato , Rinite , Sinusite , Humanos , Olfato/fisiologia , Anosmia/metabolismo , Inflamação/metabolismo , Mucosa Olfatória/metabolismo , Doença Crônica
5.
Sci Immunol ; 9(92): eabq4341, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38306414

RESUMO

The olfactory neuroepithelium serves as a sensory organ for odors and forms part of the nasal mucosal barrier. Olfactory sensory neurons are surrounded and supported by epithelial cells. Among them, microvillous cells (MVCs) are strategically positioned at the apical surface, but their specific functions are enigmatic, and their relationship to the other specialized epithelial cells is unclear. Here, we establish that the family of MVCs comprises tuft cells and ionocytes in both mice and humans. Integrating analysis of the respiratory and olfactory epithelia, we define the distinct receptor expression of TRPM5+ tuft-MVCs compared with Gɑ-gustducinhigh respiratory tuft cells and characterize a previously undescribed population of glandular DCLK1+ tuft cells. To establish how allergen sensing by tuft-MVCs might direct olfactory mucosal responses, we used an integrated single-cell transcriptional and protein analysis. Inhalation of Alternaria induced mucosal epithelial effector molecules including Chil4 and a distinct pathway leading to proliferation of the quiescent olfactory horizontal basal stem cell (HBC) pool, both triggered in the absence of olfactory apoptosis. Alternaria- and ATP-elicited HBC proliferation was dependent on TRPM5+ tuft-MVCs, identifying these specialized epithelial cells as regulators of olfactory stem cell responses. Together, our data provide high-resolution characterization of nasal tuft cell heterogeneity and identify a function of TRPM5+ tuft-MVCs in directing the olfactory mucosal response to allergens.


Assuntos
Mucosa Olfatória , 60419 , Humanos , Camundongos , Animais , Mucosa Olfatória/metabolismo , Mucosa Nasal , Células Epiteliais/metabolismo , Proliferação de Células , Quinases Semelhantes a Duplacortina
6.
Cell Tissue Res ; 396(1): 95-102, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38347202

RESUMO

The odor space of aquatic organisms is by necessity quite different from that of air-breathing animals. The recognized odor classes in teleost fish include amino acids, bile acids, reproductive hormones, nucleotides, and a limited number of polyamines. Conversely, a significant portion of the fish olfactory receptor repertoire is composed of trace amine-associated receptors, generally assumed to be responsible for detecting amines. Zebrafish possess over one hundred of these receptors, but the responses of olfactory sensory neurons to amines have not been known so far. Here we examined odor responses of zebrafish olfactory epithelial explants at the cellular level, employing calcium imaging. We report that amines elicit strong responses in olfactory sensory neurons, with a time course characteristically different from that of ATP-responsive (basal) cells. A quantitative analysis of the laminar height distribution shows amine-responsive cells undistinguishable from ciliated neurons positive for olfactory marker protein. This distribution is significantly different from those measured for microvillous neurons positive for transient receptor potential channel 2 and basal cells positive for proliferating cell nuclear antigen. Our results suggest amines as an important odor class for teleost fish.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Animais , Peixe-Zebra/metabolismo , Cálcio/metabolismo , Aminas/metabolismo , Odorantes , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Receptores Odorantes/metabolismo
7.
PLoS One ; 19(2): e0298640, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38416730

RESUMO

OBJECTIVE: The development of treatments that promote the regenerative capacity of the olfactory epithelium (OE) is desirable. This study aimed to evaluate the effects of intranasal administration of concentrated growth factors (CGFs) in a rat model of olfactory dysfunction. STUDY DESIGN: Animal study. METHODS: Nineteen male rats were used. Fourteen olfactory dysfunction models were created by intraperitoneal administration of 3-methylindole. We randomly divided the rats from the olfactory dysfunction model after 1 week into the CGF or saline group; CGFs were administered to seven animals and saline to seven animals. Behavioral assessments using the avoidance test were conducted until day 28 after CGF/saline administration. On day 28, histological evaluation was conducted to determine olfactory epithelial thickness and the olfactory marker protein (OMP)-positive cell count. Five animals were intraperitoneally injected with saline as the control group. RESULTS: The avoidance rate remained decreased until 28 days after CGF/saline administration, and there was no significant difference between the two groups. Olfactory epithelial thicknesses on day 28 were 38.64 ± 3.17 µm and 32.84 ± 4.50 µm in the CGF and saline groups, respectively. OE thickness was significantly thicker in the CGF group than in the saline group (P = 0.013). The numbers of OMP-positive cells were 40.29 ± 9.77/1.0 × 104 µm2 and 31.00 ± 3.69/1.0 × 104 µm2 in the CGF and saline groups, respectively. The number of OMP+ cells in the CGF group was significantly increased compared with that in the saline group (P = 0.009). Both groups showed no improvement compared with the control group (OE thickness: 54.08 ± 3.36 µm; OMP+ cell count: 56.90 ± 9.91/1.0 × 104 µm2). CONCLUSIONS: The CGF group showed improved olfactory epithelial thickness and OMP-positive cell numbers compared with that in the saline group.


Assuntos
Transtornos do Olfato , Mucosa Olfatória , Ratos , Animais , Masculino , Administração Intranasal , Mucosa Olfatória/metabolismo , Olfato , Proteína de Marcador Olfatório/metabolismo , Transtornos do Olfato/tratamento farmacológico , Regeneração
8.
J Integr Neurosci ; 23(2): 27, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38419438

RESUMO

BACKGROUND: Olfactory impairment has been reported in patients with depression and in rodent models of depression. Olfactory epithelium (OE) is the only peripheral neural tissue connected to the brain that has the potential for self-renewal. We hypothesized the olfactory deficit during depression may be related to the dysfunction of OE progenitor cells. The aim of the present study was therefore to evaluate the expansion and neuronal differentiation potency of cultured OE progenitor cells obtained from a rat model of depression. METHODS: Rats were exposed to chronic unpredictable mild stress procedures to establish a depressive-like state. Depressive-like behavior and olfactory sensing function were then evaluated and compared with control rats. Primary OE progenitor cells were cultured in vitro. The proliferation potency and survival of OE progenitor cells were assessed by 5-Ethynyl-2'-deoxyuridine staining and Cell Counting Kit-8 (CCK8), respectively, while cellular apoptosis was measured by flow cytometry. The neuronal differentiation potency of OE progenitor cells was evaluated by measurement of the protein and mRNA level of ß-3 tubulin, a marker of neural cells. mRNA expression associated with neural stemness was examined by quantitative reverse transcription polymerase chain reaction (RT-PCR). RESULTS: Depressive-like rats showed decreased olfactory function. OE progenitor cells from depressive-like rats showed reduced cell proliferation/survival and neuronal differentiation potency. Moreover, OE progenitor cells from depressive-like rats showed decreased expression of mRNA related to neural stemness. CONCLUSIONS: These results indicate the impaired function of OE progenitor cells may contribute to the olfactory deficit observed during depression. The OE may therefore provide a window for the study of depression.


Assuntos
Depressão , Mucosa Olfatória , Humanos , Ratos , Animais , Mucosa Olfatória/metabolismo , Neurônios/metabolismo , Células-Tronco/metabolismo , RNA Mensageiro/metabolismo , Células Cultivadas
9.
J Neuroimmunol ; 387: 578288, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38237527

RESUMO

We examined the histopathological changes in the olfactory mucosa of cynomolgus and rhesus macaque models of SARS-CoV-2 infection. SARS-CoV-2 infection induced severe inflammatory changes in the olfactory mucosa. A major histocompatibility complex (MHC) class II molecule, HLA-DR was expressed in macrophage and supporting cells, and melanocytes were increased in olfactory mucosa. Supporting cells and olfactory neurons were infected, and SARS-CoV-2 N protein was detected in the axons of olfactory neurons and in olfactory bulbs. Viral RNA was detected in olfactory bulbs and brain tissues. The olfactory epithelium-olfactory bulb pathway may be important as a route for intracranial infection by SARS-CoV-2.


Assuntos
COVID-19 , Bulbo Olfatório , Animais , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia , SARS-CoV-2 , COVID-19/patologia , Macaca mulatta , Mucosa Olfatória/metabolismo , Mucosa Olfatória/patologia , Inflamação/metabolismo , Macaca fascicularis
10.
BMC Pulm Med ; 24(1): 14, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38178092

RESUMO

BACKGROUND: Pulmonary fibrosis (PF) is a progressive fibrosing interstitial pneumonia that leads to respiratory failure and other complications, which is ultimately fatal. Mesenchymal stem cells (MSCs) transplant is a promising strategy to solve this problem, while the procurement of MSCs from the patient for autotransplant remains a challenge. METHODS: Here, we presented olfactory mucosa mesenchymal stem cells (OM-MSCs) from mouse turbinate and determined the preventing efficacy of allotransplant for PF. We demonstrated the antiinflammation and immunomodulatory effects of OM-MSCs. Flow cytometric analysis was used to verify the effect of OM-MSCs on monocyte-derived macrophage populations in the lung. RESULTS: Administration of OM-MSCs reduces inflammation, attenuates the matrix metallopeptidase 13 (MMP13) expression level and restores the bleomycin (BLM)-induced pulmonary fibrosis by assessing the architecture of lung, collagen type I; (COL1A1), actin alpha 2, smooth muscle, aorta (ACTA2/α-SMA) and hydroxyproline. This therapeutic effect of OM-MSCs was related to the increase in the ratio of nonclassical monocytes to proinflammatory monocytes in the lung. CONCLUSIONS: This study suggests that transplant of OM-MSCs represents an effective and safe treatment for PF.


Assuntos
Células-Tronco Mesenquimais , Fibrose Pulmonar , Humanos , Camundongos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/terapia , Fibrose Pulmonar/metabolismo , Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo , Imunomodulação , Mucosa Olfatória/metabolismo
11.
J Neuroinflammation ; 20(1): 299, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098019

RESUMO

BACKGROUND: The neurological effects of the coronavirus disease of 2019 (COVID-19) raise concerns about potential long-term consequences, such as an increased risk of Alzheimer's disease (AD). Neuroinflammation and other AD-associated pathologies are also suggested to increase the risk of serious SARS-CoV-2 infection. Anosmia is a common neurological symptom reported in COVID-19 and in early AD. The olfactory mucosa (OM) is important for the perception of smell and a proposed site of viral entry to the brain. However, little is known about SARS-CoV-2 infection at the OM of individuals with AD. METHODS: To address this gap, we established a 3D in vitro model of the OM from primary cells derived from cognitively healthy and AD individuals. We cultured the cells at the air-liquid interface (ALI) to study SARS-CoV-2 infection under controlled experimental conditions. Primary OM cells in ALI expressed angiotensin-converting enzyme 2 (ACE-2), neuropilin-1 (NRP-1), and several other known SARS-CoV-2 receptor and were highly vulnerable to infection. Infection was determined by secreted viral RNA content and confirmed with SARS-CoV-2 nucleocapsid protein (NP) in the infected cells by immunocytochemistry. Differential responses of healthy and AD individuals-derived OM cells to SARS-CoV-2 were determined by RNA sequencing. RESULTS: Results indicate that cells derived from cognitively healthy donors and individuals with AD do not differ in susceptibility to infection with the wild-type SARS-CoV-2 virus. However, transcriptomic signatures in cells from individuals with AD are highly distinct. Specifically, the cells from AD patients that were infected with the virus showed increased levels of oxidative stress, desensitized inflammation and immune responses, and alterations to genes associated with olfaction. These results imply that individuals with AD may be at a greater risk of experiencing severe outcomes from the infection, potentially driven by pre-existing neuroinflammation. CONCLUSIONS: The study sheds light on the interplay between AD pathology and SARS-CoV-2 infection. Altered transcriptomic signatures in AD cells may contribute to unique symptoms and a more severe disease course, with a notable involvement of neuroinflammation. Furthermore, the research emphasizes the need for targeted interventions to enhance outcomes for AD patients with viral infection. The study is crucial to better comprehend the relationship between AD, COVID-19, and anosmia. It highlights the importance of ongoing research to develop more effective treatments for those at high risk of severe SARS-CoV-2 infection.


Assuntos
Doença de Alzheimer , COVID-19 , Humanos , SARS-CoV-2 , Anosmia/metabolismo , Doenças Neuroinflamatórias , Doença de Alzheimer/metabolismo , Mucosa Olfatória/metabolismo
12.
J Morphol ; 284(11): e21655, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37856277

RESUMO

Many tetrapod vertebrates have two distinct olfactory organs, the olfactory epithelium (OE) and vomeronasal organ (VNO). In turtles, the olfactory organ consists of two types of sensory epithelia, the upper chamber epithelium (UCE; corresponding to the OE) and the lower chamber epithelium (LCE; corresponding to the VNO). In many turtle species, the UCE contains ciliated olfactory receptor cells (ORCs) and the LCE contains microvillous ORCs. To date, several transcription factors involved in the development of the OE and VNO have been identified in mammals. Fez family zinc-finger protein 1 and 2 (Fezf1 and 2) are expressed in the OE and VNO, respectively, of mouse embryos, and are involved in the development and maintenance of ORCs. B-cell lymphoma/leukemia 11B (Bcl11b) is expressed in the mouse embryo OE except the dorsomedial parts of the nasal cavity, and regulates the expression of odorant receptors in the ORCs. In this study, we examined the expression of Fezf1, Fezf2, and Bcl11b in the olfactory organs of embryos in three turtle species, Pelodiscus sinensis, Trachemys scripta elegans, and Centrochelys sulcata, to evaluate their involvement in the development of reptile olfactory organs. In all three turtle species, Bcl11b was expressed in the UCE, Fezf2 in the LCE, and Fezf1 in both the UCE and LCE. These results imply that the roles of the transcription factors Fezf1, Fezf2, and Bcl11b in olfactory organ development are conserved among mammals and turtles.


Assuntos
Mucosa Olfatória , Fatores de Transcrição , Proteínas Supressoras de Tumor , Tartarugas , Órgão Vomeronasal , Animais , Mucosa Olfatória/inervação , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Tartarugas/genética , Tartarugas/metabolismo , Órgão Vomeronasal/inervação , Órgão Vomeronasal/metabolismo
13.
J Neuroimmune Pharmacol ; 18(3): 476-494, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37658943

RESUMO

Transplantation of curcumin-activated olfactory ensheathing cells (aOECs) improved functional recovery in spinal cord injury (SCI) rats. Nevertheless, little is known considering the underlying mechanisms. At the present study, we investigated the promotion of regeneration and functional recovery after transplantation of aOECs into rats with SCI and the possible underlying molecular mechanisms. Primary OECs were prepared from the olfactory bulb of rats, followed by treatment with 1µM CCM at 7-10 days of culture, resulting in cell activation. Concomitantly, rat SCI model was developed to evaluate the effects of transplantation of aOECs in vivo. Subsequently, microglia were isolated, stimulated with 100 ng/mL lipopolysaccharide (LPS) for 24 h to polarize to M1 phenotype and treated by aOECs conditional medium (aOECs-CM) and OECs conditional medium (OECs-CM), respectively. Changes in the expression of pro-inflammatory and anti-inflammatory phenotypic markers expression were detected using western blotting and immunofluorescence staining, respectively. Finally, a series of molecular biological experiments including knock-down of triggering receptor expressed on myeloid cells 2 (TREM2) and analysis of the level of apolipoprotein E (APOE) expression were performed to investigate the underlying mechanism of involvement of CCM-activated OECs in modulating microglia polarization, leading to neural regeneration and function recovery. CCM-activated OECs effectively attenuated deleterious inflammation by regulating microglia polarization from the pro-inflammatory (M1) to anti-inflammatory (M2) phenotype in SCI rats and facilitated functional recovery after SCI. In addition, microglial polarization to M2 elicited by aOECs-CM in LPS-induced microglia was effectively reversed when TREM2 expression was downregulated. More importantly, the in vitro findings indicated that aOECs-CM potentiating LPS-induced microglial polarization to M2 was partially mediated by the TREM2/nuclear factor kappa beta (NF-κB) signaling pathway. Besides, the expression of APOE significantly increased in CCM-treated OECs. CCM-activated OECs could alleviate inflammation after SCI by switching microglial polarization from M1 to M2, which was likely mediated by the APOE/TREM2/NF-κB pathway, and thus ameliorated neurological function. Therefore, the present finding is of paramount significance to enrich the understanding of underlying molecular mechanism of aOECs-based therapy and provide a novel therapeutic approach for treatment of SCI.


Assuntos
Microglia , Mucosa Olfatória , Traumatismos da Medula Espinal , Animais , Ratos , Anti-Inflamatórios/farmacologia , Apolipoproteínas E/metabolismo , Apolipoproteínas E/farmacologia , Apolipoproteínas E/uso terapêutico , Curcumina/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , NF-kappa B/metabolismo , Recuperação de Função Fisiológica , Transdução de Sinais , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/metabolismo , Mucosa Olfatória/metabolismo , Mucosa Olfatória/transplante
14.
Chem Senses ; 482023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37586060

RESUMO

Smell detection depends on nasal airflow, which can make absorption of odors to the olfactory epithelium by diffusion through the mucus layer. The odors then act on the chemo-sensitive epithelium of olfactory sensory neurons (OSNs). Therefore, any pathological changes in the olfactory area, for instance, dry nose caused by Sjögren's Syndrome (SS) may interfere with olfactory function. SS is an autoimmune disease in which aquaporin (AQP) 5 autoantibodies have been detected in the serum. However, the expression of AQP5 in olfactory mucosa and its function in olfaction is still unknown. Based on the study of the expression characteristics of AQP5 protein in the nasal mucosa, the olfaction dysfunction in AQP5 knockout (KO) mice was found by olfactory behavior analysis, which was accompanied by reduced secretion volume of Bowman's gland by using in vitro secretion measure system, and the change of acid mucin in nasal mucus layer was identified. By excluding the possibility that olfactory disturbance was caused by changes in OSNs, the result indicated that AQP5 contributes to olfactory functions by regulating the volume and composition of OE mucus layer, which is the medium for the dissolution of odor molecules. Our results indicate that AQP5 can affect the olfactory functions by regulating the water supply of BGs and the mucus layer upper the OE that can explain the olfactory loss in the patients of SS, and AQP5 KO mice might be used as an ideal model to study the olfactory dysfunction.


Assuntos
Transtornos do Olfato , Síndrome de Sjogren , Camundongos , Humanos , Animais , Olfato , Mucosa Olfatória/metabolismo , Síndrome de Sjogren/metabolismo , Síndrome de Sjogren/patologia , Aquaporina 5/genética , Aquaporina 5/metabolismo , Transtornos do Olfato/genética , Transtornos do Olfato/metabolismo
15.
Cell Tissue Res ; 393(2): 253-264, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37266727

RESUMO

The olfactory organ of turtles consists of an upper chamber epithelium (UCE) with associated glands, and a lower chamber epithelium (LCE) devoid of glands. The UCE and LCE are referred to as the air-nose and the water-nose, respectively, because the UCE is thought to detect airborne odorants, while the LCE detects waterborne odorants. However, it is not clear how the two are used in the olfactory organ. Odorant receptors (ORs) are the major olfactory receptors in turtles; they are classified as class I and II ORs, distinguished by their primary structure. Class I ORs are suggested to be receptive to water-soluble ligands and class II ORs to volatile ligands. This study analyzed the expression of class I and II ORs in hatchlings of the green sea turtle, Chelonia mydas, through in situ hybridization, to determine the localization of OR-expressing cells in the olfactory organ. Class I OR-expressing cells were distributed mainly in the LCE, implying that the LCE is receptive to waterborne odorants. Class II OR-expressing cells were distributed in both the UCE and LCE, implying that the entire olfactory organ is receptive to airborne odorants. The widespread expression of class II ORs may increase opportunities for sea turtles to sense airborne odorants.


Assuntos
Neurônios Receptores Olfatórios , Receptores Odorantes , Tartarugas , Animais , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Ligantes , Neurônios Receptores Olfatórios/metabolismo , Olfato , Água , Mucosa Olfatória/metabolismo
16.
Cancer Res Commun ; 3(6): 980-990, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37377616

RESUMO

Olfactory neuroblastoma is a rare tumor arising from the olfactory cleft region of the nasal cavity. Because of the low incidence of this tumor, as well as an absence of established cell lines and murine models, understanding the mechanisms driving olfactory neuroblastoma pathobiology has been challenging. Here, we sought to apply advances from research on the human olfactory epithelial neurogenic niche, along with new biocomputational approaches, to better understand the cellular and molecular factors in low- and high-grade olfactory neuroblastoma and how specific transcriptomic markers may predict prognosis. We analyzed a total of 19 olfactory neuroblastoma samples with available bulk RNA-sequencing and survival data, along with 10 samples from normal olfactory epithelium. A bulk RNA-sequencing deconvolution model identified a significant increase in globose basal cell (GBC) and CD8 T-cell identities in high-grade tumors (GBC from ∼0% to 8%, CD8 T cell from 0.7% to 2.2%), and significant decreases in mature neuronal, Bowman's gland, and olfactory ensheathing programs, in high-grade tumors (mature neuronal from 3.7% to ∼0%, Bowman's gland from 18.6% to 10.5%, olfactory ensheathing from 3.4% to 1.1%). Trajectory analysis identified potential regulatory pathways in proliferative olfactory neuroblastoma cells, including PRC2, which was validated by immunofluorescence staining. Survival analysis guided by gene expression in bulk RNA-sequencing data identified favorable prognostic markers such as SOX9, S100B, and PLP1 expression. Significance: Our analyses provide a basis for additional research on olfactory neuroblastoma management, as well as identification of potential new prognostic markers.


Assuntos
Estesioneuroblastoma Olfatório , Neoplasias Nasais , Camundongos , Humanos , Animais , Estesioneuroblastoma Olfatório/genética , Mucosa Olfatória/metabolismo , Condutos Olfatórios/patologia , Neoplasias Nasais/genética , RNA/metabolismo
17.
Development ; 150(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37260223

RESUMO

Horizontal basal cells (HBCs) residing within severely damaged olfactory epithelium (OE) mediate OE regeneration by differentiating into odorant-detecting olfactory sensory neurons (OSNs) and other tissue supporting non-neuronal cell types. Depending on both tissue type and integrity, the Notch signaling pathway can either positively or negatively regulate resident stem cell activity. Although Notch1 specifies HBC dormancy in the uninjured OE, little is known about how HBCs are influenced by the Notch pathway following OE injury. Here, we show that HBCs depend on a functional inversion of the Notch pathway to appropriately mediate OE regeneration. At 24 h post-injury, HBCs enhance Notch1-mediated signaling. Moreover, at 3 days post-injury when the regenerating OE is composed of multiple cell layers, HBCs enrich both Notch1 and the Notch ligand, Dll1. Notably, HBC-specific Notch1 knockout increases HBC quiescence and impairs HBC differentiation into neuronal progenitors and OSNs. Interestingly, complete HBC knockout of Dll1 only decreases differentiation of HBC-derived OSNs. These data underscore the context-dependent nature of Notch signaling. Furthermore, they reveal that HBCs regulate their own neurogenic potential after OE injury.


Assuntos
Mucosa Olfatória , Neurônios Receptores Olfatórios , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Neurogênese/fisiologia , Diferenciação Celular/fisiologia , Células-Tronco
18.
Brain Behav Immun ; 111: 151-168, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37061103

RESUMO

The olfactory epithelium undergoes constant neurogenesis throughout life in mammals. Several factors including key signaling pathways and inflammatory microenvironment regulate the maintenance and regeneration of the olfactory epithelium. In this study, we identify TMEM59 (also known as DCF1) as a critical regulator to the epithelial maintenance and regeneration. Single-cell RNA-Seq data show downregulation of TMEM59 in multiple epithelial cell lineages with aging. Ablation of TMEM59 leads to apparent alteration at the transcriptional level, including genes associated with olfactory transduction and inflammatory/immune response. These differentially expressed genes are key components belonging to several signaling pathways, such as NF-κB, chemokine, etc. TMEM59 deletion impairs olfactory functions, attenuates proliferation, causes loss of both mature and immature olfactory sensory neurons, and promotes infiltration of inflammatory cells, macrophages, microglia cells and neutrophils into the olfactory epithelium and lamina propria. TMEM59 deletion deteriorates regeneration of the olfactory epithelium after injury, with significant reduction in the number of proliferative cells, immature and mature sensory neurons, accompanied by the increasing number of inflammatory cells and macrophages. Anti-inflammation by dexamethasone recovers neuronal generation and olfactory functions in the TMEM59-KO animals, suggesting the correlation between TMEM59 and inflammation in regulating the epithelial maintenance. Collectively, TMEM59 regulates olfactory functions, as well as neuronal generation in the olfactory epithelium via interaction with inflammation, suggesting a potential role in therapy against olfactory dysfunction associated with inflamm-aging.


Assuntos
Neurônios Receptores Olfatórios , Animais , Mucosa Olfatória/metabolismo , Inflamação/metabolismo , Neurogênese , NF-kappa B/metabolismo , Mamíferos
19.
Cells ; 12(5)2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36899901

RESUMO

In this study, we aimed to determine whether nasally administered murine adipose-derived stem cells (ADSCs) could support olfactory regeneration in vivo. Olfactory epithelium damage was induced in 8-week-old C57BL/6J male mice by intraperitoneal injection of methimazole. Seven days later, OriCell adipose-derived mesenchymal stem cells obtained from green fluorescent protein (GFP) transgenic C57BL/6 mice were nasally administered to the left nostril of these mice, and their innate odor aversion behavior to butyric acid was assessed. Mice showed significant recovery of odor aversion behavior, along with improved olfactory marker protein (OMP) expression on both sides of the upper-middle part of the nasal septal epithelium assessed by immunohistochemical staining 14 d after the treatment with ADSCs compared with vehicle control animals. Nerve growth factor (NGF) was detected in the ADSC culture supernatant, NGF was increased in the nasal epithelium of mice, and GFP-positive cells were observed on the surface of the left side nasal epithelium 24 h after left side nasal administration of ADSCs. The results of this study suggest that the regeneration of olfactory epithelium can be stimulated by nasally administered ADSCs secreting neurotrophic factors, thereby promoting the recovery of odor aversion behavior in vivo.


Assuntos
Células-Tronco Mesenquimais , Fator de Crescimento Neural , Camundongos , Masculino , Animais , Fator de Crescimento Neural/metabolismo , Camundongos Endogâmicos C57BL , Adipócitos , Mucosa Olfatória/metabolismo
20.
Chem Senses ; 482023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36744918

RESUMO

The Ca2+-activated Cl¯ channel TMEM16B carries up to 90% of the transduction current evoked by odorant stimulation in olfactory sensory neurons and control the number of action potential firing and therefore the length of the train of action potentials. A loss of function approach revealed that TMEM16B is required for olfactory-driven behaviors such as tracking unfamiliar odors. Here, we used the electro-olfactogram (EOG) technique to investigate the contribution of TMEM16B to odorant transduction in the whole olfactory epithelium. Surprisingly, we found that EOG responses from Tmem16b knock out mice have a bigger amplitude compared to those of wild type. Moreover, the kinetics of EOG responses is faster in absence of TMEM16B, while the ability to adapt to repeated stimulation is altered in knock out mice. The larger EOG responses in Tmem16b knock out may be the results of the removal of the clamping and/or shunting action of the Ca2+-activated Cl¯ currents leading to the paradox of having smaller transduction current but larger generator potential.


Assuntos
Anoctaminas , Neurônios Receptores Olfatórios , Animais , Camundongos , Anoctaminas/genética , Cálcio/metabolismo , Camundongos Knockout , Mucosa Olfatória/metabolismo , Neurônios Receptores Olfatórios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...